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ABSTRACT

In 1994, Muse and Gaut (MG) and Goldman and Yang (GY) proposed evolutionary models that recognize
the coding structure of the nucleotide sequences under study, by defining a Markovian substitution process
with a state space consisting of the 61 sense codons (assuming the universal genetic code). Several variations
and extensions to their models have since been proposed, but no general and flexible framework for
contrasting the relative performance of alternative approaches has yet been applied. Here, we compute
Bayes factors to evaluate the relative merit of several MG and GY styles of codon substitution models,
including recent extensions acknowledging heterogeneous nonsynonymous rates across sites, as well as
selective effects inducing uneven amino acid or codon preferences. Our results on three real data sets
support a logical model construction following the MG formulation, allowing for a flexible account of global
amino acid or codon preferences, while maintaining distinct parameters governing overall nucleotide
propensities. Through posterior predictive checks, we highlight the importance of such a parameterization.
Altogether, the framework presented here suggests a broad modeling project in the MG style, stressing the
importance of combining and contrasting available model formulations and grounding developments in a
sound probabilistic paradigm.

CODON-BASED Markovian substitution models are
widely recognized as attractive descriptions of

molecular evolution (Yang 2006). There has also been
an increasing recognition that some of these modeling
approaches can be attributed population genetic in-
terpretations (Thorne et al. 2007), and with the emerg-
ing juncture of population genetics and molecular
evolutionary modeling (Felsenstein 2007), the codon-
based framework could have much to contribute to these
domains. A panoply of codon substitution models are
now available, most of which consist of modifications and
extensions of the seminal works of Muse and Gaut

(1994) (MG) and Goldman and Yang (1994) (GY).
Suppose an alignment of nucleotide sequences, re-

lated according to a given phylogenetic tree. The more
traditional level of interpretation surmises each nucle-
otide column of the alignment as arising from an in-
dependent continuous-time Markov process running
over the tree and with a state space consisting of the four
different nucleotides. In its general reversible form (e.g.,
Lanave et al. 1984), the model is represented using six
relative exchangeability parameters (with 5 effective
d.f.), for each possible (unordered) pair of nucleotides,
and four nucleotide propensities (with 3 effective d.f.),
and is often referred to as the general time reversible (GTR)
model. Taking this model as a starting point in the case

of protein-coding sequences, a first step to mechanisti-
cally acknowledging the coding nature of the data is to
suppose a strong purifying selection against stop co-
dons; the process is reformulated in a state space
consisting of nucleotide triplets, omitting triplet states
corresponding to stops. In effect, such a model is
equivalent to the same GTR type of model applied at
the nucleotide level, but with the constraint that the
nucleotide sequence must encodesome full-length amino
acid sequence (one-third the length of the nucleotide
sequence). This is the rationale of the codon substitu-
tion models in the style of MG. Importantly, it implies
that the rates of substitution (entries of the generator of
the Markov processes) are proportional to the target
nucleotide (at the mutating position). From this point, a
further model construction step in the MG style is to
distinguish between synonymous and nonsynonymous
events, for instance utilizing the parameterization pre-
sented in the original work or the more compact rep-
resentation of fixing the synonymous rate factor at one,
with a free nonsynonymous rate factor.

In contrast with the MG style of model formulation,
the GY models have entries of the Markov generator
proportional to the stationary probability of the target
codon. The contrast between the two formulations can be
made very subtle. Indeed, a GY-style model can be spec-
ified from the same six nucleotide relative exchange-
ability and four nucleotide propensity parameters used
in the MG-style model above. In such a case, codon
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stationary probabilities are approximated as propor-
tional to the product of the three propensity parameter
values associated with the nucleotides at each of the
three codon positions (however, such a model entails
peculiarproperties, as we discuss in later sections). Another
option available in the GY style is based on a full 61-
dimensional (with 60 effective d.f., assuming the univer-
sal genetic code) vector of codon stationary probabilities
(F61) (e.g., Huelsenbeck and Dyer 2004; Huelsenbeck

et al. 2006; Yang 2006). The GY-F61 approach has been
suggested as important in giving ‘‘more freedom for the
model to explain the data by modifying substitution
rates using codon frequencies’’ (Huelsenbeck and
Dyer 2004, p. 670). This may be the case, but the GY-
F61 model has no natural mechanistic interpretation at
the nucleotide level; nucleotide propensities have no
direct parameterization in this formulation, and are only
implicitly modeled, in a manner confounded with other
effects inducing uneven codon stationary probabilities.

Another widely used modeling idea, adopted in both
MG and GY formulations, has been to assign a separate
set of nucleotide propensity parameters to each of the
three codon positions. The distinction with the pre-
viously mentioned models is commonly referred to as
F1 3 4 vs. F3 3 4, reflecting the use of a single vs. three
vectors of dimension 4 (3 d.f.). However, the F3 3 4
configuration stands only as a phenomenological ac-
count of how the coding structure of the data induces a
periodic pattern along the nucleotide sequence; there
is no mechanistic sense to modeling features induced
by selection via an expanded parameterization at the
nucleotide level. In other words, this expanded param-
eterization may capture net resultants of the coding
nature of the sequences, but it is not representative of
our understanding of the causative factors bearing on
the evolutionary process. Differences observed at each
of the three codon positions are most likely the result of
factors bearing on amino acid or codon preferences, or
other high-order features, and should logically be
modeled as such.

Recently, Yang and Nielsen (2008) studied models
that address these issues, with explicit parameterizations
bearing on amino acid or codon preferences within the
MG formulation. From their analysis of mammalian
genes, they find support for their formulation and hence
further validate a modeling strategy aimed at disentan-
gling mutational and selective features (Thorne 2007;
Thorne et al. 2007; Yang and Nielsen 2008).

However, the ongoing developments of codon sub-
stitution models need to be complemented with rigor-
ous evaluation and selection approaches, to contrast the
relative merit of different modeling ideas. The Bayes fac-
tor (Jeffreys 1935) provides a natural framework for
this purpose, with the theoretical advantage of being
applicable to the comparison of any pair of models; it
does not require models to be nested, and it intrinsically
penalizes for higher-dimensional formulations. Bayes

factors have already been used for comparing Markovian
models of substitution at either the nucleotide level (e.g.,
Suchard et al. 2001) or the amino acid level (e.g.,
Lartillot and Philippe 2006). As discussed in Lartillot

and Philippe (2006), reliable evaluations of Bayes factors
for complex evolutionary models require elaborate
computational devices. These computational demands
are compounded at the codon level of interpretation,
where the state space invoked leads to more taxing
likelihood calculations than at the nucleotide or amino
acid levels. Nonetheless, the application of Monte Carlo
procedures running on modern computing machines
makes these calculations feasible, thus allowing for broad
codon substitution model comparisons.

In this work, we conduct such a Bayesian analysis of
model fit and include all of the above-mentioned MG-
and GY-style models, comparing the F1 3 4, F3 3 4, and
F61 (in the GY context) configurations. We also include
similar versions to the models of Yang and Nielsen

(2008), which allow for a flexible account of either
global amino acid preferences or global codon prefer-
ences. Each of these model configurations is contrasted
in turn with a modeling of nonsynonymous rate hetero-
geneity, using the Dirichlet process device (Ferguson

1973) as described by Huelsenbeck et al. (2006). From
our analysis of three real data sets, our findings indicate
that a mechanistic MG-style modeling strategy that
explicitly recognizes uneven codon preferences, while
accounting for a global background of nucleotide pro-
pensities and heterogeneous nonsynonymous substitu-
tion rates, tends to outperform other models (or match
top performing models). We explore aspects of the
posterior distributions under the top models and
conduct posterior predictive assessments (Rubin 1984;
Gelman et al. 1996, 2004) highlighting implicit proper-
ties of the models.

DATA

We used the following data sets, which we refer to here
using a shorthand indicating the number of sequences
and their length in number of codons: Globin17-144, 17
vertebrate sequences of the b-globin gene, described in
Yang et al. (2000a); Lysin25-134, 25 abalone sperm lysin
sequences, described in Yang et al. (2000b); and Hiv22-
99, 22 sequences of the human immunodeficiency virus
type 1 protease, described in Doron-Faigenboim and
Pupko (2007). For computational reasons, we worked
under a fixed tree throughout and, in all three cases,
used the same topologies as those used in the works
cited for each data set.

MODELS

The models considered here are defined according to
continuous-time Markov processes, with the infinitesi-
mal generators written as Q ¼ [Qij], specifying the
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instantaneous rate of substitution from codon i to
codon j—we write ic ( jc) to refer to the nucleotide state
at position c of codon i ( j). The matrix Q (under the
universal genetic code with stop codons excluded) is 61 3

61 (i.e., 1 # i, j # 61, and 1 # c # 3). It can be
significantly simplified by viewing all substitutions as
resulting from point mutations, such that each entry
either is set to 0 (when states differ by two or three
nucleotides) or is constructed from low-dimensional
components. In the next sections, we describe these
components in detail, constructing the entries of Q
following modeling approaches inspired from Muse

and Gaut (1994) and Goldman and Yang (1994), with
extensions proposed by Huelsenbeck et al. (2006) and
Yang and Nielsen (2008). The models are not identical
to those presented in these original works, but corre-
spond to flexible generalizations, while allowing us to
focus on the distinguishing features of interest.

MG-style models: We begin with the mechanistic
modeling standpoint proposed by Muse and Gaut

(1994), with a Markov generator given by

Qij }

.ic jc ujc ; if A;
v.ic jc ujc ; if B;
0; otherwise;

8<
: ð1Þ

where

A : i and j are synonymous and differ only

at codon position c;

B : i and j are nonsynonymous and differ only

at codon position c;

. ¼ ð.abÞ1#a;b#4 is a set of (symmetrical) nucleotide
relative exchangeability parameters, with the (arbitrary)
constraint

P
1#a,b#4 .ab ¼ 1; u ¼ (ua)1#a#4, withP4

a¼1 ua ¼ 1, represents a set of global nucleotide
equilibrium propensities; and v is the coefficient bear-
ing on nonsynonymous rates, for now treated as a global
parameter.

When v ¼ 1, this model corresponds to the well-
known GTR model invoked for nucleotide-level inter-
pretations, but with the purifying constraint against all
stop codons. Here, however, v is always treated as a free
parameter, and the model is referred to as MG-F1 3 4.

Following in the MG style, Yang and Nielsen (2008)
introduced a model with parameters bearing on codon
fitness. A convenient parameterization of equivalent
dimensionality is given as

Qij }

.ic jc ujc

cj

ci

� �1=2
; if A;

v.ic jc ujc

cj

ci

� �1=2
; if B;

0; otherwise;

8>><
>>:

ð2Þ

where c ¼ (cj)1#j#61, with
P61

j¼1 cj ¼ 1, represents a set
of 61 codon preference parameters (60 d.f.). The ex-
ponent 1

2 ensures reversibility (see the appendix),
although the model could be expanded at this level as
well (see Goldman and Whelan 2002). As it is, entries
corresponding to substitutions from an unpreferred
codon to a preferred codon (cj=ci . 1) will be higher
than entries corresponding to substitutions from a
preferred to an unpreferred codon (cj=ci , 1), and in
this way, an explicit account of global codon preference
(CP) is included while maintaining an account of bac-
kground nucleotide propensities. We refer to this model
as MG-F1 3 4-CP.

Note that the codon preferences captured by c can be
the result of several factors, including, for instance,
global amino acid preferences. One way of assessing
whether the CP model is capturing effects beyond those
of global amino acid preferences is to compare it with a
simplified version of the CP formulation, which ac-
counts only for such features as given by

Qij }

.ic jc ujc ; if A;

v.ic jc ujc

ff ðjÞ
ff ðiÞ

� �1=2
; if B;

0; otherwise;

8><
>: ð3Þ

where f ¼ (fk)1#k#20 is a 20-dimensional (19-d.f.)
vector associated with amino acid preferences (AAP),
and where f(i) returns an index corresponding the
amino acid encoded by codon i. As in the case of the CP
model, entries corresponding to substitutions from an
unpreferred amino acid to a preferred amino acid
(ff ðjÞ=ff ðiÞ. 1) will thus be higher than entries corre-
sponding to substitutions from a preferred to an
unpreferred amino acid (ff ðjÞ=ff ðiÞ, 1). We refer to
this model as MG-F1 3 4-AAP.

Finally, despite departing from the mechanistic mod-
eling perspective, we also investigate the F3 3 4
configurations for the models defined in (1)–(3), by
substituting u appropriately with codon position-spe-
cific nucleotide propensity parameters, written as u(c) ¼
(uðcÞa )1#a#4, where "c, 1 # c # 3,

P4
a¼1 uðcÞa ¼ 1. The MG-

F3 3 4 model is thus written as

Qij }

.ic jc u
ðcÞ
jc ; if A;

v.ic jc u
ðcÞ
jc ; if B;

0; otherwise;

8><
>: ð4Þ

the MG-F3 3 4-CP model as

Qij }

.ic jc u
ðcÞ
jc

cj

ci

� �1=2
; if A;

v.ic jc u
ðcÞ
jc

cj

ci

� �1=2
; if B;

0; otherwise;

8>><
>>:

ð5Þ

and the MG-F3 3 4-AAP model as
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Qij}

.ic jc u
ðcÞ
jc ; if A;

v.ic jc u
ðcÞ
jc

ff ðjÞ
ff ðiÞ

� �1=2
; if B;

0; otherwise:

8><
>: ð6Þ

GY-style models: The models in the style proposed by
Goldman and Yang (1994) have Markov generators
specified as

Qij }

.ic jc pj ; if A;
v.ic jc pj ; if B;
0; otherwise;

8<
: ð7Þ

where p¼ (pi)1#i#61, with
P61

i¼1 pi ¼ 1, represents a 61-
dimensional (60 d.f.) vector of codon stationary prob-
abilities (distinct from c).

Several options for p are available. First, it can be
based on a set of global nucleotide propensity param-
eters according to

pi } ui1ui2ui3 : ð8Þ

We refer to this model as GY-F1 3 4. Careful examination
of this model reveals a number of peculiar properties,
which seem undesirable. For instance, in a mutational
context prone to events leading to A or T (i.e., where the
parameters uA and uT tend to be higher than uC and uG)
a substitution from codon CGC to CTC would have a
lower instantaneous rate than a substitution from codon
ATA to AGA. In such a scenario, the rate of an event
involving the second codon position depends on the
nucleotide states at the first and third positions, which,
in this case, leads to the higher rate for the substitution
going against the mutational bias. From the mechanistic
model construction described by the MG strategy, how-
ever, there are no obvious reasons for linking a change at
the second position to the states at the first and third
positions, unless this is mediated by selective effects at
the codon level (e.g., stop codons). Accordingly, for this
same instance, the MG model displays the reverse
situation, with the CGC to CTC substitution having a
higher instantaneous rate than the ATA to AGA sub-
stitution in a manner consistent with the mutational
bias.

Another similar choice for the GY models is to base
p on codon-position-specific nucleotide equilibrium
frequencies,

pi } uð1Þi1 uð2Þi2 uð3Þi3 ; ð9Þ

in which case we refer to the model as GY-F3 3 4. Note
that the GY-F1 3 4 and MG-F1 3 4 models, as well as the
GY-F3 3 4 and MG-F3 3 4 models, are respectively
constructed from the exact same parameters; they also
have the same limiting distributions and hence differ
only in terms of their transient specifications (further
details on this point are given in Yang and Nielsen

2008, as well as in the appendix). Finally, we consider

the case where p is directly free—a full 61-dimensional
(60-d.f.) vector—which we refer to as GY-F61.

The limiting distributions of all models are given in
full in the appendix, along with further details specific
to our implementation.

Priors: Our prior on branch lengths is exponential,
with a mean determined by a hyperparameter, itself
endowed with an exponential prior of mean 1. Adopting
the approach presented by Huelsenbeck et al. (2006),
our most general prior on nonsynonymous rate factors
is the Dirichlet process (DP)—as an infinite mixture
across sites—with hyperparameter a, modulating the
assumed ‘‘graininess’’ of nonsynonymous heterogene-
ity; a is endowed with an exponential prior of mean 1.
The Dirichlet process prior also utilizes a base measure,
defining the probability distribution of each compo-
nent; as in Huelsenbeck et al. (2006), we use p(v)¼ 1/
(1 1 v)2, the probability density of the ratio of two
identically distributed draws from an exponential. This
same base prior is used when dispensing with the DP
framework, with the model based on a single global v-
factor. All other parameters have flat Dirichlet priors on
their respective state space.

MODEL COMPARISONS

Bayes factors: Given a data set D and a model M,
specified by some high-dimensional parameter vector
u 2 Q, we wish to evaluate the predictive probability, or
marginal likelihood, written as p(D j M) and obtained
by averaging the likelihood p(D j u, M) over the prior
p(u j M):

pðD jM Þ ¼
ð

Q

pðD j u; M Þpðu jM Þdu: ð10Þ

When comparing two models of interest, M0 and M1,
the Bayes factor (B01) provides a measure of the evidence
in favor of one model over the other:

B01 ¼
pðD jM1Þ
pðD jM0Þ

ð11Þ

( Jeffreys 1935). A Bayes factor . (,) 1 is considered as
evidence in favor of M1 (M0).

We used the model-switch thermodynamic integra-
tion framework described in Lartillot and Philippe

(2006) to evaluate Bayes factors across all codon sub-
stitution models described above. The model-switch
thermodynamic integration method is a computation-
ally intensive Markov chain Monte Carlo procedure, and
our strategy here has been to evaluate all log Bayes
factors with respect to the GY-F1 3 4 model. Several log
Bayes factors are computed from multiple independent
model-switch schemes. For instance, the log Bayes factor
between MG-F3 3 4-CP-DP and GY-F1 3 4 is assembled
from

1582 N. Rodrigue, N. Lartillot and H. Philippe



ln
pðD jMG-F3 3 4-CP-DPÞ

pðD jGY-F1 3 4Þ

¼ ln
pðD jMG-F3 3 4-CP-DPÞ

pðD jMG-F3 3 4-CPÞ

1 ln
pðD jMG-F3 3 4-CPÞ

pðD jMG-F3 3 4Þ

1 ln
pðD jMG-F3 3 4Þ
pðD jGY-F3 3 4Þ

1 ln
pðD jGY-F3 3 4Þ
pðD jGY-F1 3 4Þ ; ð12Þ

where each term is evaluated using a distinct model-
switch scheme (see supplemental materials). Following
Lartillot and Philippe (2006), we found the sam-
pling error to be less problematic than the ‘‘thermic lag’’
of the method, which we thus made the focus of our
MCMC settings. We ran each calculation in duplicate,
using the quasi-static bidirectional method detailed in
Lartillot and Philippe (2006, also see the supple-
mental material). Each pair of model-switch integra-
tions produces two values, used here to construct an
interval, and gives a crude sense of the precision of the
settings. Note that the bidirectional scheme is employed
as a framework for empirical MCMC tuning (see sup-
plemental material) and not as a method for formal
calculation of the Monte Carlo error.

As expected, the log Bayes factors can be made more
precise when comparing models that are parametrically
closest to the reference model (see solid bands in Figure
1). When computing log Bayes factors for the more
complex models, involving several distinct model-switch
schemes, the interval of the overall log Bayes factor
against GY-F1 3 4 is constructed conservatively (to pro-
duce the broadest possible interval). This means that the
interval (the error) grows with each step in model space.
However, a careful model-space traversal appears neces-
sary in practice, despite this growing error of multiple
steps, as performing a direct integration between a high-
dimensional model and the reference would require
overcostly computations (see supplemental material).
Still, in certain cases, an entirely unambiguous model
ranking remains computationally prohibitive. For in-
stance, with the Globin17-144 data, the log Bayes factor
of MG-F3 3 4-CP-DP against GY-F1 3 4, and the log Bayes
factor of MG-F1 3 4-CP-DP against GY-F1 3 4, overlap
with each other, which thus prevents us from clearly
distinguishing the two models. In the present context,
obtaining the required level of precision for distinguish-
ing between log-marginal likelihoods that differ by a few
units is relatively uninteresting and not worth the com-
putational investment that would be needed when
utilizing the present methods. Our objective here is
rather to map out the main effects of different formu-
lations in terms of overall model fit.

Posterior predictive assessments: The calculation of
Bayes factors allows for a quantitative ranking of a

competing set of models. However, we want to explore
how the models perform in absolute terms, by compar-
ing the value of certain statistics computed on the real
data with those computed on data replicates, generated
by simulation under the model of interest. In the
Bayesian framework, the simulation is typically con-
ducted for each draw of a sample from the posterior,
and the distribution of the statistic is referred to as the
posterior predictive distribution. This designation is appro-
priate, in that the distribution consists of what we would
expect to see under the model, in light of what has been
learned from the data at hand. Discrepancies between
posterior predictive distributions and observed values
reveal weaknesses of a model, as previously explored in
phylogenetic modeling contexts (e.g., Bollback 2002;
Nielsen 2002; Lartillot et al. 2007). A conventional
way of summarizing the discrepancy between a posterior
predictive distribution and the observed value of some
statistic is to report the area of the distribution to the
right of the observed value, otherwise referred to as the
posterior predictive P-value (see, e.g., Gelman et al.
2004); this can be computed as the proportion of
replicates for which the statistic equals or exceeds the
observed value. We illustrate this approach here using
codon-position-specific nucleotide frequencies and co-
don entropy.

Note that formulating tests based on the posterior
predictive P-values to ‘‘reject’’ models would require
further calibration (since the data replicates were gen-
erated from unknown, previously estimated parameter
values). In the case of the nucleotide frequencies, such a
formal testing across all dimensions would require
further correction (since dimensions are not indepen-
dent). Nonetheless, these types of difficulties do not
prevent us from performing simple graphical contrasts
of features of true and replicated data (Gelman et al.
2004).

RESULTS AND DISCUSSION

Bayes factors: The series of log Bayes factors reported
in Figure 1 reveals considerable differences in model
performance, indicating the importance of conducting
a careful examination of alternative parametric choices.
We note that the MG-F1 3 4-CP-DP model is among the
top ranking models for all three data sets. This result is
somewhat expected. First, nonsynonymous rate hetero-
geneity has now been observed across numerous data
sets (Yang 2006), and it thus seems reasonable to
anticipate a good performance of the Dirichlet process
framework proposed by Huelsenbeck et al. (2006). For
the Globin17-144 data set, we also tried a version of the
DP model with a uniform hyperprior over the interval
[0:1000] on a, in the MG-F1 3 4-CP-DP setting. With
respect to the reference model, the resulting log Bayes
factor interval of [237.8; 242.3] is overlapping with the
top-ranking models, suggesting that model choice in
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favor of the DP model is robust to the hyperprior; more
work is still needed, however, to explore alternative prior
structures on the Dirichlet process in this context, in
particular regarding alternative base priors distribu-
tions. The other specifications of this top model are
also reassuring, in the sense that adhering closely to the
mechanistic perspective of teasing apart mutational fea-
tures and selective constraints produces, at worst, a model
of roughly equivalent performance to models lacking
such a natural interpretation. In addition, all three data
sets suggest uneven codon preferences, although such
preferences appear to go well beyond amino acid pref-
erences only in the case of the Globin17-144.

We next note that under the simpler settings of MG-
style models, suppressing AAP or CP parameters, the F3 3

4 configuration is generally preferred over the F1 3 4
configuration for all three data sets. The periodic
pattern of codon-position-specific nucleotide propensi-
ties is a feature expected from the structure of the
genetic code, through selective constraints. Such an
interpretation, however, is not accurately represented

by expanding the nucleotide-level parameterization.
Indeed, with the richer models, including the CP
parameters in particular, the F3 3 4 configurations are
only mildly preferred over the F1 3 4 configuration, and
when invoking the Dirichlet process, modeling hetero-
geneous nonsynonymous rates, the numerical error no
longer allows for a clear distinction between these two
configurations (except for the Hiv22-99 data set, which
gives preference to the F1 3 4 configuration). We also
observed the parametric redundancy of including both
the F3 3 4 setting and the CP parameters to be
susceptible to identifiability problems (see supplemen-
tal material).

The GY style of models based on the F1 3 4 and F3 3 4
configurations is generally disfavored over the MG-style
counterparts (except for the Globin17-144 data set, which
gives favor to GY-F3 3 4 over MG-F3 3 4). Surprisingly,
for the Lysin25-134 data set, the simpler GY-F1 3 4
model is slightly preferred over the GY-F3 3 4 model.
However, for all three data sets, the GY model based on
F61 configurations outperforms the other GY-style mod-
els, as well as the simpler MG-style models. In the case of
the Globin17-144 data set, the contrast of the F61
configuration is even greater than that observed between
homogeneous and heterogeneous models of nonsynon-
ymous rates; for instance, the log Bayes factor of GY-F61
against GY-F1 3 4 is [115.8; 117.4] whereas that of GY-F1 3

4-DP against GY-F1 3 4 is [102.3; 104.2]. These results for
the GY-F61 model are also indicative of uneven codon
preferences. However, as previously mentioned, the
codon preferences accounted for in this GY formulation
are confounded with other features, including the
background of nucleotide propensities, making the
model less attractive on interpretive grounds. Accord-
ingly, when contrasted with the richer MG formulations
accounting for codon (or amino acid) preferences, the
GY-F61 model is less attractive on quantitative grounds
(except for Hiv22-99, in which case it matches the top
MG-style models).

Posterior distributions: To highlight a few aspects of
the MG-F1 3 4-CP-DP model, which was among the top
performing for all three data sets, we display posterior
distributions of parameters (obtained using plain MCMC
sampling). Our focus is on the combination of back-
ground nucleotide propensities with global codon pre-
ference parameters, but we contrast the distributions
with those obtained under the simpler model suppress-
ing CP parameters, as well as under the GY-F61-DP
model. We also explore the impacts of different models
on the detection of positive selection.

Figure 2 displays the 95% credibility intervals of the
posterior distributions of the global nucleotide pro-
pensity parameters for each data set. The solid lines
correspond to the interval obtained under MG-F1 3 4-
DP, whereas the dashed lines are obtained under MG-F1 3

4-CP-DP. The distributions are far more diffuse under
the CP version, although their general locations appear

Figure 1.—Natural logarithm of the Bayes factor for all
models taken with respect to to the GY-F1 3 4 model. The
solid bands are representative of the overall precision of
the calculations (broader bands indicate poorer precision).
(a) The Globin17-144 data set; (b) Lysin25-134; (c) Hiv22-99.
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similar. This is the well-known feature of increasingly
diffuse distributions obtained when expanding the
form of models and that we observed for the other
parameters of the models as well (not shown).

Figure 3 displays the 95% credibility intervals of the
posterior distributions of codon preference parameters
under the MG-F1 3 4-CP-DP model, in comparison with
the codon stationary parameters under GY-F61-DP
model. Note that the parameters do not have the same
interpretation under the two models. For the GY-F61-DP
model, the parameters correspond to the limiting
distribution of the Markov process; but for the MG-F1 3

4-CP-DP model, the limiting distribution of the Markov
process is based on both codon preference parameters
and nucleotide propensity parameters, and hence the
graphical comparison displayed here does not corre-
spond to a formal statistical testing. The GY-F61-DP

model leads to tighter 95% credibility intervals than the
MG-F1 3 4-CP-DP, which concords with its lower di-
mensionality. However, the overall distributions of the
two sets of parameters are reasonably similar, with some
degree of overlap in all cases. Thus both models appear
to be capturing similar overall trends. The distributions
suggest pronounced overall codon preferences for
Globin17-144, but milder preferences for Lysin25-134
and Hiv22-99. This corroborates well with our com-
puted Bayes factors, which, for instance, indicate that
for Lysin25-134 and Hiv22-99, the improvement brought
about by the CP parameters is less important than for
the Globin17-144 data. Observing the distributions for
the Globin17-144 data set in detail, we find that the
parameter values appear to capture long observed
tendencies of codon preferences on similar data, such
as the elevated use of CTG for encoding leucine, GTG
for valine, or GGC for glycine; indeed, these were some
of the first observations stimulating research into the
causes of codon preferences (e.g., Fitch 1980; Mod-

iano et al. 1981; Kimura 1983).
We contrasted the conclusions of the GY-F61-DP, MG-

F1 3 4-DP, and MG-F1 3 4-CP-DP models with regard to
the central application of such models: the inference of
amino acid positions having undergone positive selec-
tion. Under the DP settings, the posterior probability of
a site being under positive selection can be computed
from the proportion of draws from a sample (obtained
via plain MCMC sampling) found to be in a class v . 1,
as described in Huelsenbeck et al. (2006). We first note
that for the Globin17-144, focusing on posterior prob-
abilities at 0.9, 0.95, and 0.99 cutoff levels, the MG-F1 3

4-DP and MG-F1 3 4-CP-DP models infer sites under
positive selection at each level, whereas the GY-F61-DP
model infers no sites at either level (Table 1). The list of
sites under positive selection under the three models
considered also differs for the other two data sets (Table
1). The computed Bayes factor can be used to weigh the
conclusions of different models and indeed could form
the basis of a model averaging inference of positive
selection. It will be important to conduct a broader
empirical study of the impacts of these and other para-
metric choices on the detection of positive selection.

Posterior predictive assessments: To investigate
whether different nucleotide frequencies observed at
the three different codon positions can be a result of
codon preferences, we computed the codon-position-
specific frequencies of each nucleotide on data repli-
cates, generated by simulation under parameters
sampled from the posterior distribution. Focusing on
the Globin17-144 data set, Figure 4 displays the posterior
predictive distribution of the frequency of nucleotide A
at the three positions under the MG-F1 3 4-DP model
(solid lines), the MG-F1 3 4-CP-DP model (thick dashed
lines), and the GY-F61 model (thin dashed lines). The
MG-F1 3 4-DP model leads to closely matching distri-
butions at the three positions, from the definition of the

Figure 2.—Ninety-five percent credibility intervals of
global nucleotide propensity parameters obtained under
MG-F1 3 4-DP (solid lines) and under MG-F1 3 4-CP-DP
(dashed lines). (a) The Globin17-144 data set; (b) Lysin25-
134; (c) Hiv22-99.
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model (although the exclusion of stop codons induces
mild shifts). In Figure 4, b and c, the posterior predictive
P-values of 0 and 1 are indicators of problems with the
MG-F1 3 4-DP model. The MG-F1 3 4-CP-DP model, in
contrast, leads to markedly different distributions at the
three positions, in a manner approaching the observed
frequencies. The GY-F61-DP model is also capable of
producing this effect, although graphical comparisons
for the three other nucleotides suggest that it does not
perform as well as the MG-F1 3 4-CP-DP model (sup-
plemental material).

In another posterior predictive check, we computed
the relative frequency of codons in alignments (real and
replicated), from which we then evaluated the overall
unevenness of the frequency profile from the codon
entropy. In Figure 5, we find, as expected, that the MG-
F1 3 4-DP model induces a relatively even predictive
codon frequency profile (from the definition of the

model), leading to a high codon entropy (solid-line
histogram). The P-value of 1 indicates that the model is
inadequate. In contrast, under the MG-F1 3 4-CP-DP
model we obtain a more uneven profile, and thus a lower
codon entropy (thick-dashed-line histogram); the P-
value is 0.528, and the model is not deemed problematic
under this test. The GY-F61-DP model leads to an
intermediate codon entropy (thin-dashed-line histo-
gram), which poorly anticipates the empirical value,
but is nonetheless much closer than the MG-F1 3 4-DP
model.

These two posterior predictive checks are indicative
of tensions in the GY-F61-DP model configuration. The
overall model construction strategy of the GY approach
may be unable to adequately capture codon preferences
without inducing distorted nucleotide propensities.
Although the GY-F61-DP model finds a compromise to
this tension that performs better than simpler models,

Figure 3.—Ninety-five
percent credibility intervals
of codon stationary proba-
bilities under the GY-F61-
DP model (solid lines) and
codon preference parame-
ters under the MG-F1 3
4-CP-DP model (dashed
lines). (a) The Globin17-
144 data set; (b) Lysin25-
134; (c) Hiv22-99.
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in its ability to phenomenologically capture overall
codon preference trends, it is outperformed by the
MG-F1 3 4-CP-DP model, which explicitly decouples
codon preferences from nucleotide propensities.

CONCLUSIONS AND FUTURE DIRECTIONS

In recent years, numerous codon substitution models
have been proposed, subscribing to either the GY or the
MG perspective. GY-style models have been extended in
several ways, for instance, to account for heterogeneous
nonsynonymous rates (e.g., Nielsen and Yang 1998;
Yang et al. 2000a; Huelsenbeck and Dyer 2004;
Huelsenbeck et al. 2006) or to recognize differences
in the types of nonsynonymous substitutions, either
based on various amino acid distance metrics (e.g., Yang

et al. 1998), by partitioning amino acids into predefined
classes (Sainudiin et al. 2005; Wong et al. 2006), by
incorporating information from an empirically derived
amino acid replacement matrix (Doron-Faigenboim

and Pupko 2007), or even based on full empirical
modeling strategies (Kosiol et al. 2007). In parallel,
MG-style models have been extended in similar ways as
well, such as the models recognizing heterogeneous syn-
onymous and nonsynonymous substitution rates across
codon sites (Kosakovsky Pond and Muse 2005), models
incorporating partition-based amino acid exchange pro-
pensities (Schadt and Lange 2002), or models ac-
counting for dependence between codon positions due
to protein tertiary structure (Robinson et al. 2003).

In light of all of these developments, the present study
effectively takes a step back, to reassess the core
motivation underlying codon-based models, namely,
the formulation of a biologically meaningful parame-
terization that disentangles the different factors bearing

on the overall substitution process. Our results indicate
that a mechanistically founded attempt of teasing apart
nucleotide propensities and amino acid or codon
preferences in the MG style tends to surpass, or at least
match, the optimal GY-style model. These results sug-
gest that future modeling investigations should con-
sider incorporating any extensions in the MG context.

Quantitative model comparisons based on Bayes
factors would be of particular interest to evaluate how
some of the recently proposed models mentioned above
compare with the models studied here. For instance, the
models proposed in Robinson et al. (2003), which can
account for dependencies between codon sites due to
structural constraints at the protein level, could be
included into the scope of models evaluated. Working at
the amino acid level, we previously proposed a variation
of the thermodynamic method for evaluating Bayes
factors with models accommodating a general depen-
dence across sites (Rodrigue et al. 2006), which could
be transposed to the codon level in a straightforward
way. A broad range of model extensions are also evident
from the AAP and CP approaches proposed in this work:
given that these richer MG-style models lead to an
improved overall fit, models based on mixtures of AAP
or CP parameters could also be studied, so as to capture
site-specific preferences. To this end, the Dirichlet
process prior, applied here to model nonsynonymous
rate heterogeneity across sites (Huelsenbeck et al.
2006), could also be applied to the AAP parameters or
to the CP parameters. Indeed, the necessary MCMC
operators for manipulating such models have been
described previously (Lartillot and Philippe 2004).
It might also be of interest to extend these models to
nonstationary nucleotide propensities, as well as to non-
stationary amino acid or codon preferences, on the

TABLE 1

Amino acid sites under positive selection

Data Model Sites

Globin17-144 GY-F61-DP —
MG-F1 3 4-DP 7, 48, 50, 54, 67, 85, 123,
MG-F1 3 4-CP-DP 7, 11, 50, 67, 85, 123

Lysin25-134 GY-F61-DP 2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 32, 33, 36, 37,
41, 44, 64, 67, 68, 70, 74, 83, 86, 87, 100,
106, 107, 113, 115, 116, 120, 123, 126, 132

MG-F1 3 4-DP 4, 6, 7, 9, 10, 11, 12, 14, 32, 33, 36, 40, 41, 44,
45, 64, 67, 68, 70, 74, 75, 82, 83, 86, 87, 100,
106, 107, 113, 115, 119, 120, 126, 127, 132

MG-F1 3 4-CP-DP 4, 6, 7, 9, 10, 12, 14, 32, 33, 36, 37, 41, 44,
64, 67, 68, 70, 74, 75, 83, 86, 87, 100, 106,
113, 115, 119, 120, 123, 126, 127, 132

Hiv22-99 GY-F61-DP 54, 37, 63
MG-F1 3 4-DP 10, 12, 32, 33, 37, 41, 46, 47, 50, 54, 63, 82
MG-F1 3 4-CP-DP 10, 32, 33, 37, 50, 54, 63

Numbers in italics are at the 0.9 level, those in regular type are at the 0.95 level, and those underlined are at
the 0.99 level.
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basis of ideas presented in Blanquart and Lartillot

(2006) and Nielsen et al. (2007).
We note that analogous quantitative model compar-

isons would be difficult in a frequentist framework. The
nonnested form of the models of interest complicates
traditional frequentist tests, in which case most practi-
tioners rely on criteria such as the Akaike information
criterion (AIC) (Akaike 1974). However, the AIC (and
other similar criteria) relies on maximum-likelihood
parameter estimates, as well as the log-likelihood value
at this optimal point. Performing maximum-likelihood
estimation and log-likelihood calculations will likely
become increasingly difficult as richer nonanalytical
models are proposed (Rodrigue et al. 2007), such as the
Dirichlet process models or models with dependence
across sites (Robinson et al. 2003).

Extending comparisons over many data sets will be of
prime importance to determine if the results presented
here can be generalized. However, such a project would
entail significant computational costs using the model-
switch thermodynamic methods employed here (several
log Bayes factor calculations required over 40 days on an
Intel P4 3.2 GHz desktop computer). We are currently
investigating a marginal-likelihood estimator combin-
ing sigmoidal model-switch schemes (Lepage et al.

2007) with the Laplace method for integrals, along
the lines described in Rodrigue et al. (2007). Combi-
nations with other Bayes factor calculation schemes
(e.g., Suchard et al. 2001; Choi et al. 2007) are also
possible, and the availability of such a suite of compu-
tational devices should enable a broad empirical study
and help uncover and quantify the main factors bearing
on protein-coding sequence evolution.
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APPENDIX

In our implementation the entries of Q are based on two sets of specifications: a 61-dimensional vector of stationary
probabilities, p, and a set of transient specifications, written as r ¼ (rij)1#i,j#61 and combined according to

Qij } rij pj ; i 6¼ j ðA1Þ

Qii ¼ �
X
j 6¼i

Qij : ðA2Þ

In this appendix, we write out in full the stationary probabilities under the models, as well as the full transient
specifications, and give an example of the detailed balance check.
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Stationary probabilities: First, expanding (8) for the stationary distribution under GY-F1 3 4, we have

pi ¼
ui1ui2ui3P61
j¼1 uj1uj2uj3

: ðA3Þ

Similarly, with GY-F334, we have

pi ¼
uð1Þi1 uð2Þi2 uð3Þi3P61
j¼1 uð1Þj1 uð2Þj2 uð3Þj3

: ðA4Þ

The stationary probability under GY-F61 is already entirely specified and the models MG-F1 3 4 and MG-F3 3 4 have
the same stationary distributions as (A3) and (A4), respectively.

Under the MG-F1 3 4-CP model, the stationary probability is given by

pi ¼
ui1ui2ui3 ciP61
j¼1 uj1uj2uj3 cj

; ðA5Þ

and under the MG-F1 3 4-AAP model it is given by

pi ¼
ui1ui2ui3 ff ðiÞP61
j¼1 uj1uj2uj3 ff ð jÞ

: ðA6Þ

The stationary distributions under the MG-F3 3 4-CP and MG-F3 3 4-AAP models follow directly as

pi ¼
uð1Þi1 uð2Þi2 uð3Þi3 ciP61
j¼1 uð1Þj1 uð2Þj2 uð3Þj3 cj

ðA7Þ

and

pi ¼
uð1Þi1 uð2Þi2 uð3Þi3 ff ðiÞP61

j¼1 uð1Þj1 uð2Þj2 uð3Þj3 ff ð jÞ
; ðA8Þ

respectively.
Transient specifications: In the case of GY-type models, the transient specification is simply (7) without the pj factor.

In the case of the MG-F1 3 4 model, we have

rij ¼

.ic jc

ujc9
ujc$

Z ; if A;
v.ic jc

ujc9
ujc$

Z ; if B;

0; otherwise;

8>><
>>:

ðA9Þ

where c9 and c$ are the two constant codon positions, and Z is the normalizing factor of the stationary distribution (in
this case Z ¼

P61
j¼1 uj1

uj2
uj3

). Note that this latter Z factor is not needed when scaling Q. Once again, substituting ujc

with uðcÞjc
, and the appropriate Z, yields the transient specification for MG-F3 3 4.

For the MG-F1 3 4-CP model, the transient specification is given by

rij ¼

.ic jc

ujc9
ujc$

ffiffiffiffiffiffiffi
cicj

p Z ; if A;
v.ic jc

ujc9
ujc$

ffiffiffiffiffiffiffi
cicj

p Z ; if B;

0; otherwise;

8>>><
>>>:

ðA10Þ

and the specification of MG-F1 3 4-AAP is given by

rij ¼

.ic jc

ujc9
ujc$

ff ð jÞ
Z ; if A;

v.ic jc

ujc9
ujc$

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ff ðiÞff ðjÞ
p Z ; if B;

0; otherwise:

8>>><
>>>:

ðA11Þ
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As always, substituting ujc
with uðcÞjc

, and the appropriate Z, yields the transient specifications for the F3 3 4 versions
of (A10) and (A11).

We have now fully specified p and r used in Equation A1. We can see that upon substituting stationary and transient
specifications appropriately into (A1), the models defined in the main body of the text are obtained. For instance, for
a nonsynonymous substitution under the MG-F1 3 4-CP model, we have

rij pj ¼
v.ic jc

ujc9
ujc$

ffiffiffiffiffiffiffiffiffi
cicj

p Z 3
uj1uj2uj3 cj

Z
ðA12Þ

¼
v.ic jc ujc cjffiffiffiffiffiffiffiffiffi

cicj

p ðA13Þ

¼
v.ic jc ujc

ffiffiffiffiffi
cj

p ffiffiffiffiffi
cj

p
ffiffiffiffiffi
ci

p ffiffiffiffiffi
cj

p ðA14Þ

¼ v.ic jc ujc

cj

ci

� �1=2

; ðA15Þ

corresponding to the entry obtained from (2).
Checking the detailed balance: The models studied here all satisfy the equality pQ ¼ 0, and are time reversible,

satisfying the equality Qijpi ¼ Qjipj. These developments are lengthy, and so we display only one example, for the
detailed balance check under MG-F1 3 4-CP in the case where i and j differ at one nucleotide position, implying a
nonsynonymous substitution,

Qij pi ¼ Qjipj ðA16Þ

v.ic jc uj1uj2uj3 cj

ujc9
ujc$

ffiffiffiffiffiffiffiffiffi
cicj

p ui1ui2ui3 ci ¼
v.jc ic ui1ui2ui3 ci

uic9
uic$

ffiffiffiffiffiffiffiffiffi
cj ci

p uj1uj2uj3 cj ðA17Þ

v.ic jc =uj1uj2uj3 cj

uj
c9
ujc$

ffiffiffiffiffiffiffiffiffi
cicj

p ui1ui2ui3 ci ¼
v.jc ic ui1ui2ui3 ci

uic9
uic$

ffiffiffiffiffiffiffiffiffi
cj ci

p =uj1uj2uj3 cj ðA18Þ

v.ic jc

ujc9
ujc$

ffiffiffiffiffiffiffiffiffi
cicj

p =ui1ui2ui3 ci ¼
v.jc ic =ui1ui2ui3 ci

uic9
uic$

ffiffiffiffiffiffiffiffiffi
cj ci

p ðA19Þ

v.ic jc =ujc9
ujc$

ffiffiffiffiffiffiffiffiffi
cicj

p ¼
v.jc ic =uic9

uic$

ffiffiffiffiffiffiffiffiffi
cj ci

p ðA20Þ

=v.ic jc ¼ =v.jc ic ðA21Þ

.ic jc ¼ .jc ic ; ðA22Þ

where the array . is symmetrical, satisfying the equality.
Finally, we mention here that we follow the practice proposed by Huelsenbeck et al. (2006) and scale Q matrices

such that branch lengths represent the expected number of synonymous substitutions per codon site, although we
have also tried the model comparisons without any scaling of Q (such that branch lengths have no meaningful units)
and obtained essentially identical results (not shown).
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